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The goal of hadron physics is the provision of a quantitative explanation of the
properties of hadrons through a solution of quantum chromodynamics (QCD). This is a
fundamental problem that is unique in the history of science: never before have we been
confronted by a theory whose elementary excitations are not those degrees-of-freedom
readily accessible via experiment. Moreover, QCD generates forces which are so strong
that less-than 2% of a nucleon’s mass can be attributed to the so-called current-quark
masses that appear in the QCD Lagrangian; viz., forces that generate mass from almost
nothing, a phenomenon known as dynamical chiral symmetry breaking (DCSB).

Neither confinement nor DCSB is apparent in QCD’s Lagrangian and yet they play
the dominant role in determining the observable characteristics of real-world QCD. The
physics of hadrons is ruled by emergent phenomena, such as these, which can only be
elucidated through the employment of nonperturbative methods in quantum field theory.
This is both the greatest novelty and the greatest challenge within the Standard Model.
We must find essentially new ways and means to explain precisely via mathematics the
observable content of QCD. Herein we provide a snapshot of recent progress in hadron
physics made using QCD’s Dyson-Schwinger equations (DSEs). The complex of DSEs
is a powerful tool, which has been employed with marked success to study confinement
and DCSB, and their impact on hadron observables. This is apparent from Ref. [1].

Asymptotic coloured states have not been observed, so no solution to QCD will be
complete if it does not explain confinement. This means confinement in the real world,
which contains quarks with light current-quark masses. That is distinct from the artificial
universe of pure-gauge QCD without dynamical quarks, studies of which tend merely to
focus on achieving an area law for a Wilson loop and hence are irrelevant to the question
of light-quark confinement.

Confinement can be related to the analytic properties of QCD’s Schwinger functions
[2] and can therefore be translated into the challenge of charting the infrared behavior
of QCD’s universal β -function. This is a well-posed problem whose solution can be
addressed in any framework enabling the nonperturbative evaluation of renormalisation
constants. In this connection we note that the hadron spectrum [3], and hadron elastic
and transition form factors [4, 5] provide unique information about the long-range inter-
action between light-quarks and, in addition, the distribution of a hadron’s characterising



properties amongst its QCD constituents. However, to make full use of extant and forth-
coming data, it will be necessary to have Poincaré covariant theoretical tools that enable
the reliable study of hadrons in the mass range 1-2GeV. Crucially, on this domain both
confinement and DCSB are germane; and the DSEs provide such a tool.

DCSB; namely, the generation of mass from nothing, does take place in QCD. It
arises primarily because a dense cloud of gluons comes to clothe a low-momentum
quark. This is best seen by solving the DSE for the dressed-quark propagator [6]; i.e.,
the gap equation. However, the origin of the interaction strength at infrared momenta,
which guarantees DCSB through the gap equation, is unknown. This relationship ties
confinement to DCSB. The reality of DCSB means that the Higgs mechanism is largely
irrelevant to the bulk of normal matter in the universe. Instead the single most important
mass generating mechanism for light-quark hadrons is the strong interaction effect of
DCSB; e.g., one can identify it as being responsible for 98% of a proton’s mass.

In chiral-limit QCD, DCSB is most basically expressed in a strongly momentum-
dependent dressed-quark mass; viz., M(p2) in the quark propagator:

S(p) =
1

iγ · pA(p2)+B(p2)
=

Z(p2)
iγ · p+M(p2)

. (1)

The appearance and behaviour of M(p2) are essentially quantum field theoretic effects,
unrealisable in quantum mechanics. The running mass connects the infrared and ultravi-
olet regimes of the theory, and establishes that the constituent-quark and current-quark
masses are simply two connected points on a single curve separated by a large momen-
tum interval. QCD’s dressed-quark behaves as a constituent-quark, a current-quark, or
something in between, depending on the momentum of the probe which explores the
bound-state containing the dressed-quark. It follows that calculations addressing mo-
mentum transfers Q2

∼> M2, where M is the mass of the hadron involved, require a
Poincaré-covariant approach that can veraciously realise quantum field theoretical ef-
fects [4]. Owing to the vector-exchange character of QCD, covariance also guarantees
the existence of nonzero quark orbital angular momentum in a hadron’s rest-frame [7, 8].

Through the gap and Bethe-Salpeter equations (BSEs) the pointwise behaviour of
QCD’s β -function determines the pattern of chiral symmetry breaking. Since these and
other DSEs connect the β -function to experimental observables, the comparison be-
tween computations and observations of the hadron properties can be used to chart
the β -function’s long-range behaviour. In order to realise this goal a nonperturbative
symmetry-preserving DSE truncation is necessary. Steady progress has been made with
a scheme that is systematically improvable [9, 10]. On the other hand, significant quali-
tative advances in understanding the essence of QCD could be made with symmetry-
preserving kernel Ansätze that express important additional nonperturbative effects,
which are impossible to capture in any finite sum of contributions.

Such an approach is now available [11]. It begins with a novel form for the axial-
vector BSE, which is valid when the quark-gluon vertex is fully dressed. Therefrom, a
Ward-Takahashi identity for the Bethe-Salpeter kernel is derived and solved for a class of
dressed quark-gluon-vertex models. The solution yields a symmetry-preserving closed
system of gap and vertex equations. As the analysis can readily be extended to the vector
equation, a comparison is possible between the responses of pseudoscalar- and scalar



TABLE 1. Axial-vector and vector meson masses calculated in three truncations of the coupled
gap and Bethe-Salpeter equations. The last column was obtained using the standard Ball-Chiu Ansatz
augmented by the quark anomalous chromomagnetic moment in Eqs. (3), (4).

experiment rainbow-ladder Ball-Chiu consistent Ball-Chiu
plus anom. cm mom.

mass a1 1230 759 1066 1230
mass ρ 775 644 924 745
mass splitting 455 115 142 485

meson masses to nonperturbatively dressing the quark-gluon vertex. The result indicates
that spin-orbit splitting in the meson spectrum is enormously enhanced by DCSB.

It has been conjectured [11] that the full realisation of DCSB in the Bethe-Salpeter
kernel will have a material impact on mesons with mass greater than 1 GeV. Moreover,
that it can overcome a longstanding failure of theoretical hadron physics. Namely, no
extant hadron spectrum calculation is believable because all symmetry preserving stud-
ies produce a splitting between vector and axial-vector mesons that is far too small:
just one-quarter of the experimental value (see, e.g., Refs. [12, 13, 14]). In this connec-
tion, preliminary results are now available [1] and they are listed in Table 1. The second
numerical column reports results obtained in rainbow-ladder truncation; viz., leading-
order in the systematic and symmetry-preserving truncation scheme of Ref. [10]. As
anticipated, while the ρ-meson mass is acceptable, the a1-mass is far too small.

The procedure introduced in Ref. [11] enables meson masses to be calculated using
a symmetry-preserving DSE truncation whose diagrammatic content is unknown. One
can therefore elucidate the effect of an essentially nonperturbative DCSB component
in dressed-quark gluon vertex on the ρ-a1 complex; in this case, the ∆B term in the
Ball-Chiu vertex [15], which had an enormous impact in the scalar channel:

iΓµ(q,k) = iΣA(q2,k2)γµ +2ℓµ
[
iγ · ℓ∆A(q2,k2)+∆B(q2,k2)

]
, (2)

where ℓ = (q + k)/2, ΣΦ(q,k;P) = [Φ(q;P)+ Φ(k;P)]/2 and ∆Φ(q,k;P) = [Φ(q;P)−
Φ(k;P)]/[q2−k2]. The results obtained with this vertex are shown in Table 1: the DCSB
∆B-term boosts the a1 mass, which is a positive outcome, but it simultaneously boosts the
ρ mass, such that the mass-splitting is practically unchanged from the rainbow-ladder
result. Was Ref. [11] too optimistic in imagining that the new scheme could provide the
first realistic meson spectrum encompassing states with mass greater-than 1 GeV?

Before answering, let us return to a consideration of chirally symmetric QCD. That
theory exhibits helicity conservation so that, perturbatively, the quark-gluon vertex can-
not have a term with the helicity-flipping characteristics of ∆B. There is another feature
of massless fermions in gauge field theories; namely, they cannot posses an anoma-
lous chromo/electro-magnetic moment because the term that describes it couples left-
and right-handed fermions. However, if the theory’s chiral symmetry is strongly bro-
ken dynamically, why shouldn’t the fermions posses a large anomalous chromo/electro-
magnetic moment? Such an effect is expressed in the quark-gluon-vertex via a term

Γacm
µ (q,k) = σµν(q− k)ν τ5(q,k) (3)



where, owing to DCSB, the natural strength is represented by the Ansatz

τ5(q,k) = ∆B(q2,k2) . (4)

NB. Based on the models in Refs. [4, 16], 2MEZ(M2
E)∆B(M2

E ,M2
E) ∼ −1

2 , where ME is
the Euclidean constituent-quark mass, defined in Ref. [17].

Using the procedure introduced in Ref. [11], the vector and axial-vector vertex equa-
tions can be solved using the dressed-quark-gluon vertex obtained as the sum of Eqs. (2)
and (3). The effect is remarkable: the anomalous chromomagnetic moment leads to ad-
ditional repulsion in the a1 channel but significant attraction in the ρ channel such that,
for the first time, a realistic result is simultaneously obtained for the masses in both these
channels, and hence the a1-ρ mass-splitting – see Table 1. Furthermore, the origin of the
splitting, in an interference between ∆B in Eq. (2) and τ5 in Eqs. (3), (4) is intuitively
appealing. In the chiral limit the mass-splitting between parity partners should owe
solely to DCSB and here that is seen explicitly: in the absence of DCSB, ∆B ≡ 0 ≡ τ5.
The rainbow-ladder result is also understood: this truncation fails to adequately express
DCSB in the Bethe-Salpeter kernel and hence cannot realistically split parity partners.

Table 1 is a “first-guess” result; i.e., there was no tuning of the strength in Eq. (4),
so how reliable can it be? This question amounts to deciding whether a realistic size
is assumed for a light-quark’s anomalous chromomagnetic moment. Fortunately, an
analysis is available of results for the dressed-quark-gluon vertex obtained through
numerical simulations of quenched-QCD [18]. This study shows that τ5 is dynamically
two orders-of-magnitude larger than the one-loop perturbative result and, indeed, is of
the same magnitude and possesses the same domain of significant support as ∆B(q2,k2),
precisely in accordance with the assumption we have made. In addition, efficacious
model studies support a moment of similar size [19, 20].

At this point it is natural to consider whether DCSB in QCD can also generate a
large quark anomalous electromagnetic moment term in the quark-photon vertex. In
perturbation theory, of course, since it doesn’t express DCSB, the quark’s anomalous
electromagnetic moment is small [21]. One obtains the same answer in the rainbow-
ladder truncation; e.g., the F6 and F8 terms in Ref. [22], which combine to form τ5 in our
notation, contribute less-than 1% to the pion’s electromagnetic form factor. However,
as we’ve already seen, this truncation doesn’t adequately incorporate DCSB into the
Bethe-Salpeter kernel. Only the method of Ref. [11] can readily provide an answer to
this question and we are currently compiling the necessary information.

Another important problem is the computation of the parton distribution functions
of the most accessible hadrons [23]. In connection with uncovering the essence of the
strong interaction, the behaviour of the valence-quark distribution functions at large
Bjorken-x is most relevant. Owing to the dichotomous nature of Goldstone bosons,
understanding the valence-quark distribution functions in the pion and kaon is of great
importance. Moreover, given the large value of the ratio of s-to-u current-quark masses,
a comparison between the pion and kaon structure functions offers the chance to chart
effects of explicit chiral symmetry breaking on the structure of would-be Goldstone
modes. There is also the prediction [24, 25] that a theory in which the quarks interact
via 1/k2 vector-boson exchange will produce valence-quark distribution functions for
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FIGURE 1. Left panel. Valence u-quark distribution functions, computed as described in the text: solid
curve, uπ

v (x); and dashed curve, uK
v (x). Applying leading-order QCD evolution from Q2

0 = 0.32GeV2

to Q2 = 25GeV2, explained in Sec. II.D of Ref. [23], one obtains the other two curves from these
starting distributions: dashed curve, uπ

v (x;25); and dotted curve, uK
v (x,25). Right panel. Model ratio

uK
v /uπ

v evaluated at Q2
0 = 0.32GeV2, Dashed curve, and Q2 = 25GeV2, solid curve. uK

v /uπ
v
∣∣
x=1 = 0.13.

Under the right conditions, uK
v /uπ

v should equal the ratio of kaon-to-pion Drell-Yan cross-sections, and
we reproduce that obtained from a sample of dimuon events with invariant mass 4.1 < M < 8.5GeV [26].

which
qv(x) ∝ (1− x)2+γ , x ∼> 0.85 , (5)

where γ ∼> 0 is an anomalous dimension that grows with increasing momentum transfer.
(See Sec.VI.B.3 of Ref. [23] for a detailed discussion.)

Experimental knowledge of the parton structure of the pion and kaon arises primarily
from pionic or kaonic Drell-Yan scattering from nucleons in heavy nuclei [26, 27].
Theoretically, given that DCSB plays a crucial role in connection with pseudoscalar
mesons, one must employ an approach that realistically expresses this phenomenon.
The DSEs therefore provide a natural framework: a study of the pion exists [28] and one
of the kaon is underway [29].

The results to be anticipated from the latter study have been illustrated [1] through an
internally consistent calculation based upon the QCD-improvement of a simple model
used already for pion and kaon distribution functions [30]. In Fig. 1 we depict our
computed distributions themselves and relevant ratios. Aspects of the curves are model-
independent. For example, owing to its larger mass, one anticipates that the s-quark
should carry more of the charged-kaon’s momentum than the u-quark. This explains
why the support of xuK

v (x) is shifted to lower-x than that xuπ
v (x). QCD evolution is an

area-conserving operation on the distribution function, which shifts support from large-x
to small-x. Thus, while both uπ,K

v (x;Q0) ∝ (1− x)2 for x ≃ 1,

uπ,K
v (x;Q) x≃1∝ (1− x)a, a = 2.7 . (6)

These observations explain the qualitative behaviour of the evolved distributions. Con-
cerning the ratio, as a consequence of the form of the evolution equations its value at



x = 1 is invariant under evolution, whereas the value at x = 0 approaches one under
evolution owing to the increasingly large population of sea-quarks produced thereby.

There are many reasons why this is an exciting time in hadron physics. We have
focused on one. Namely, through the DSEs, we are positioned to unify phenomena as
apparently diverse as the: hadron spectrum; hadron elastic and transition form factors,
from small- to large-Q2; and parton distribution functions. The key is an understanding
of both the fundamental origin of nuclear mass and the far-reaching consequences of the
mechanism responsible; namely, DCSB. These things might lead us to an explanation
of confinement, the phenomenon that makes nonperturbative QCD the most interesting
piece of the Standard Model.
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